высота правильной пирамиды равна 12см, а боковое ребро 13см. Найдите площадь боковой поверхности пирамиды
Ответ:
Радиус окружности, описаннной вокруг основания, равен
√ (13² - 12²) = √ (169 - 144) = √ 25 = 5 см.
Тогда сторона основания равна 5 * √ 3 см., апофема
√ (12² + 2,5²) = √ 150,25 (в правильном треугольнике радиус вписанной окружности равен половине радиуса описанной окружности)
Площадь боковой грани 5 * √ 3 * √ 150,25 / 2 = 5 * √ 1803 / 4 = 1,25 * √ 1803 ,
а площадь боковой поверхности 3 * 1,25 * √ 1803= 3,75 * √ 1803 ≈ 159,23 см²
Источник: https://znanija.com/task/275475
Похожие статьи:
Геометрия 10-11 классы → Высота правильной триугольной пирамиды равна a√3 ; радиус окружности , описанной около её основания , 2a . Найдите : а) апофему пирамиды , б) уголо между боковой гранью и основанием , в) площадь бо
Геометрия 10-11 классы → 1 вариант Высота правильной четырехугольной пирамиды равна 12см, а величина двугранного ребра при основании пирамиды 30⁰. Найдите площадь полной поверхности пирамиды. Боково
Геометрия 10-11 классы → как решить задачу в основание пирамиды sabcd лежит квадрат abcd со стороной 12 см грани mba и mbc перпендикулярны к плоскости основания, высота пирамиды равна 5. наити площадь полной поверхности
Геометрия 5-9 классы → изображена правельная треугольная пирамида ТАВС. точка F середина ребра ТС, а точка D лежит на ребре ВС и ВD=1см. Вычислите площадь боковой грани пирамиды , если известно что ребро Вс=4см, а площад
Геометрия 10-11 классы → В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60 градусов. Найдите боковое ребро пирамиды