В основании пирамиды лежит прямоугольный треугольник, катеты которого 6 и 8 см. Все боковые ребра пирамиды равны 13 см. Вычислите высоту этой пирамиды.
Ответ:
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
АВ^2=BC^2+AC^2
АВ^2=6^2+8^2 = 36+64=100
AB=10
AO=10:2=5 (cм) - радиус описанной окружности.
SO - высота пирамиды. S - вершина пирамиды.
Рассмотрим треуг-к АОВ. Угол О=90
По т. Пифагора
SВ^2=ОB^2+SО^2
SО^2=SВ^2-ОB^2
SО^2=13^2-5^2 = 169-25=144
SО=12(см)
Ответ:12(см)
Источник: https://znanija.com/task/35968
Похожие статьи:
Геометрия 5-9 классы → изображена правельная треугольная пирамида ТАВС. точка F середина ребра ТС, а точка D лежит на ребре ВС и ВD=1см. Вычислите площадь боковой грани пирамиды , если известно что ребро Вс=4см, а площад
Геометрия 10-11 классы → 1 вариант Высота правильной четырехугольной пирамиды равна 12см, а величина двугранного ребра при основании пирамиды 30⁰. Найдите площадь полной поверхности пирамиды. Боково
Геометрия 10-11 классы → В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60 градусов. Найдите боковое ребро пирамиды
Геометрия 10-11 классы → Высота правильной триугольной пирамиды равна a√3 ; радиус окружности , описанной около её основания , 2a . Найдите : а) апофему пирамиды , б) уголо между боковой гранью и основанием , в) площадь бо
Геометрия 10-11 классы → как решить задачу в основание пирамиды sabcd лежит квадрат abcd со стороной 12 см грани mba и mbc перпендикулярны к плоскости основания, высота пирамиды равна 5. наити площадь полной поверхности