сумма первых трех членов возрастающей геометрической прогрессий...
7 апреля 2013 - Администратор
Рейтинг: 0
Голосов: 0
675 просмотров
Комментарии (0)
Нет комментариев. Ваш будет первым!
сумма первых трех членов возрастающей геометрической прогрессий равна 13, а их произведение равно 27. вычислить сумму первых пяти членов этой прогрессии
Имеем систему:
b1 + b1q + b1q2 = 13
b1∙ b1q∙ b1q2 = 27.
b13 ∙q3 = 27 или b1q = 3, отсюда b1 = 3/q
Вынесем в первом уравнении b1 за скобки
b1(1 + q+ q2) = 13
3/q(1 + q+ q2) = 13 раскроем скобки
3/q + 3 + 3q =13. Приведем к общему знаменателю
3 +3q + 3q2 = 13q. Получим квадратное уравнение
3q2 – 10q + 3 = 0
D1 = 16, q1 = 3, q2 = 1/3
Т. к. прогрессия возрастающая, то q = 3
тогда b1 = 3:3 = 1, b2 = 1*3 = 3, b3= 3*3 = 9, b4 = 27, b5= 81
Cсложим их, получим: 1 + 3 + 9 + 27 + 81 = 121
первые три члена этой последовательности 1 3 9
Сумма первых 5 членов последовательности 1+3+9+27+81=121
Источник: https://znanija.com/task/346646
Алгебра → сумма 15 чисел арифм. прогресси равна 20, а сумма 20 членов равна 15 (той же прогресси) найти сумму 35 членов данной прогресси
Алгебра → Найдите сумму пяти первых членов геометрической прогрессии , если первый член равен 2, а знаменатель прогрессии равен 0, 5
Алгебра → Если первый челен арифметической прогрессии равен 7, а восьмой член -(-7), то найдите сумму первых двадцати членов аривметической прогрессии
Нет комментариев. Ваш будет первым!