Острый угол прямоугольной трапеции равен 30 градусов. Сумма длин её боковых сторон равна 36 см. Найдите высоту и площадь трапеции если меньшее основание равно 8 корень из 3.
Ответ:
треугольник CDH прямоугольный. угол CDH=30 градусов => что CH=1/2 CD.
пусть CH=x ,тогда CD=2х. AB -высота. СН=АВ. АВ+CD=36 получаем что CD+CH=36. значит x+2x=36. отсюда х=12. высота найдена. найдем боковую сторону: 36-CH. СD=36-12=24. тк треугольник CDH прямоуг. тогда DH найдем по теореме пифагора: DH^{2}=CD^{2}-CH^{2}. получаем DH^{2}=24^{2}-12^{2}=576-144=432. DH=12\sqrt{3}. найдем нижнее(оно же большее основание) 8\sqrt{3}+12\sqrt{3}=20\sqrt{3}. найдем площадь трапеции: S=1/2*AD*BC. S= 1/2*8\sqrt{3}*20\sqrt{3}=240.
Ответ: площадь S=240, высота AB=12.
Источник: https://znanija.com/task/194450
Похожие статьи:
Геометрия 5-9 классы → диагональ AC равнобедренной трапеции ABCD перпендикулярна к боковой стороне СD найдите площадь трапеции если ее основания равно 10 см и 8см
Геометрия 5-9 классы → Основы равнобедренной трапеции равны 3 см и 7 см, а диагональ разделяет тупой угол трапеции пополам. Найдите периметр трапециии.
Геометрия 5-9 классы → Разность оснований трапеции равна 6 см, а высота трапеции равна 8 см. Найти основание трапеции если её площадь равна 56 квадратных сантимеров
Геометрия 5-9 классы → большое основание равнобедренной трапеции =22 м, боковая сторона -8. 5, а диоганаль-19. 5 м. Определите пдощадь трапеции
Геометрия 5-9 классы → 1)Сторона ромба равна 20 см, а одна из диагоналей равна 24 см. Найдите площадь ромба. 2)угол при основании равнобедреннго треугольника равен 30 градусов, а площадь равна 9sqrt(3) к