Основа призмы - треугольник со сторонами 10 см, 10 см, 16 см. Найти объем призмы если меньшая диагональ боковой грани наклонена к основанию под углом в 45 градусов.

29 декабря 2012 - Администратор
Основа призмы - треугольник со сторонами 10 см, 10 см, 16 см. Найти объем призмы если меньшая диагональ боковой грани наклонена к основанию под углом в 45 градусов.

Ответ:

меньшая диагональ боковой грани это диагональ которая наклонена к стороне равной 10 см. Так как эта диагональ боковой грани наклонена к основанию под углом в 45 градусов, то эта сторона основания равна высоте. Значит высота = 10 см. Найдём площадь основания по формуле Герона: р=(10 + 10 + 16)/2 = 18. тогда площадь = корень из (18* (18 - 10)*(18 - 10)*(18 -16) = корень из (18*8*8*2) = 8*6 = 48см2 Тогда объём = 48 * 10 = 480 см3

Источник: https://znanija.com/task/47944

Похожие статьи:

Геометрия 10-11 классысрочно Діагональ бічної грані правильної трикутної призми утворює з основою кут 60 градусів . ЗНАЙТИ ОБЄМ ПРИЗМИ , ЯКЩО ПЛОЩА БІЧНОЇ ПОВЕРХНІ ПРИЗМИ 36корінь 3 см

Геометрия 10-11 классыДиагональ правильной четырехугольной призмы равна а и образует с плоскостью боковой грани угол 30 градусов. Найдите сторону основания призмы б) угол между диагональю призмы и плоскостью в) Sбок г) пло

Геометрия 10-11 классыСторона правильной четырехугольной призмы равна 12см, Диагональ призмы наклонена к основной плоскости под углом 45 градусов. Найти объем примы.

Геометрия 10-11 классыОснованием прямой призмы АВСА1В1С1 является равнобедренный треугольник, в котором АВ=АС=2sqrt(2), ВС=2. Высота призмы равна 1. Найдите градусную меру угла между ребром АС и диагональю А1В боковой г

Теги: призм
Рейтинг: 0 Голосов: 0 2795 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!