Отрезок AB является стороной правильного треугольника, вписанного в окружность с центром O1, и стороной квадрата, описанного около окружности с центром O2. Найдите наибольшую возможную длину отрезка AB, если расстояние между точками O1 и O2 равно 6
Ответ:
АВ=О2/2 из квадрата, описанного около окружности с центром O2
АВ=О1*2√3 из правильного треугольника, вписанного в окружность
О1*2√3=О2/2
О1+О2=6, решаем систему О2=6-О1
О2=О1*4√3=6-О1
О1(4√3+1)=6
О1=6/(4√3+1)
АВ=2√3*6/(4√3+1)=12√3/(4√3+1)=2,62
Источник: https://znanija.com/task/165234
Похожие статьи:
Геометрия 5-9 классы → 1 задача в прямогольном треугольнике АСВ где угол С=90 градусов, АВ=10 см угол АВС=30градусов, с центром в точке А проведена окружность. Каким должен быть радиус этой окружности чтобы:
Геометрия 5-9 классы → 1. Две окружности с центрами О и К имеют соответственно радиусы 4 и 8 см. Найдите радиусы окружностей, касающихся одновременно двух данных, если их центры лежат на прямой ОК, и отрезок ОК равен 6 с