1. В произвольном треугольнике проведена средняя линия, отсекающая от него меньший треугольник. Найдите отношение площади меньшего треугольника к площади данного треугольника.   2. В

29 декабря 2012 - Администратор

1. В произвольном треугольнике проведена средняя линия, отсекающая от него меньший треугольник. Найдите отношение площади меньшего треугольника к площади данного треугольника.

 

2. Вокруг трапеции описана окружность, центр которой находится на ее большем основании. Найдите углы трапеции, если ее меньшее основание в два раза меньше большего основания.

 

3. Угол между биссектрисой и высотой, проведенной из вершины большего угла треугольника, равен 12*. Найдите углы этого треугольника, если его наибольший угол в четыре раза больше наименьшего угла.

 

4. О1 и О2 - центры двух касающихся внешним образом окружностей. Прямая О1О2 пересекает первую окружность (с центром в точке О1) в точке А. Найдите диаметр второй окружности, если радиус первой равен 5 см, а касательная, проведенная из точки А ко второй окружности, образует с прямой О1О2 угол в 30*.  

Ответ:

1. Пусть a,H - основание и высота основного треугольника.

m,h - основание и высота отсеченного треугольника.

Так как m - средняя линия, то:

m = a/2, h = H/2

Значит площадь отсеченного треугольника - в 4 раза меньше исходного.

Ответ: s/S = 1/4.

2. ABCD - равнобедренная трапеция (около нее можно описать окружность)

т.О - середина AD (большего основания). AD = 2R - диаметр окр-ти. ВС = R - радиус окр-ти.

Тогда радиусы ОВ и ОС разбивают трапецию на три правильных треугольника со стороной R.

Значит углы трапеции: 60; 60; 120; 120 гр.

3. Рисуем тр. АВС так, что Угол В - наибольший ( тупой). Проведем биссектрису ВК и высоту ВМ из вершины этого угла.

Пусть Угол А - наименьший, А = х.

Тогда В = 4х, С = 180 - 5х.

В треугольнике ВКМ угол ВКМ = 90 - 12 = 78 гр. Он является внешним к тр-ку АВК. Значит он равен сумме внутренних углов А и В/2.

х + 2х = 78

3х = 78

х = 26,  4х = 104, 180 - 5х = 50

Ответ: 26, 50, 104 гр.

4. Рисуем две касающиеся окружности: левая (меньшая) О1 и правая(большая) О2. Проводим прямую через точки О1 и О2. Крайняя левая точка пересечения с окр О1  пометим как А. Проводим из точки А касательную АВ к окр. О2. В - точка касания.

Рассмотрим прям. тр-ик АВО2. В нем:

АО2 = 2R1 + R2 = 10 + R2,  (гипотенуза).

О2В = R2 - катет против угла в 30 гр.

Значит 2R2 = 10 + R2

R2 = 10,  2R2 = 20

Ответ: 20

Источник: https://znanija.com/task/255436

Похожие статьи:

Геометрия 5-9 классы1. Две окружности с центрами О и К имеют соответственно радиусы 4 и 8 см. Найдите радиусы окружностей, касающихся одновременно двух данных, если их центры лежат на прямой ОК, и отрезок ОК равен 6 с

Геометрия 5-9 классыОтрезок AB является стороной правильного треугольника, вписанного в окружность с центром O1, и стороной квадрата, описанного около окружности с центром O2. Найдите наибольшую возможную длину отрезк

Рейтинг: 0 Голосов: 0 830 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!