Вычислите площадь фигуры, ограниченной линиями:   а) у=9-х2(квадрат), у=0 б) у(х-1)2(квадрат), у=х+1, у=0

29 декабря 2012 - Администратор

Вычислите площадь фигуры, ограниченной линиями:

 

а) у=9-х2(квадрат), у=0

б) у(х-1)2(квадрат), у=х+1, у=0

Ответ:

а)  S = интеграл от -3 до 3 от(9 - х квад)dx = 9х /(от -3 до 3)  -  (х в кубе)/3 / (от -3 до 3) = (27+27) - (9+9) = 36.

 

б)  Сначала аналитически найдем точки пересечения графиков:

(х-1) квад = х+1. Или х квад - 3х = 0. х1 = 0;  х2 = 3. Тогда искомая площадь:

 S = S1 - S2. Здесь S1 - площадь под прямой у=х+1 на участке от 0 до 3, а S2- площадь под параболой (х-1) квад  на том же участке.

S = интеграл от 0 до 3 от [(х+1) - (х-1)квад]dx  = интеграл от 0 до 3 от (3х - хквад)dx = [3(хквад)/2 - хкуб/3]  /взято от 0 до 3 = 27/2  -   27/3  = 9/2 = 4,5

 Ответ: 4,5

Источник: https://znanija.com/task/252662

Похожие статьи:

Математика 1-4 классы площадь квадрата 4 кв. м. , в него встроен другой квадрат, найти его площадь.

Математика 1-4 классызадание №1 найди площадь и периметр всего участка, изображённого на плане, если 1 см на плане соотвествует 5 м на местности. какая площадь участка занята огурцами? во сколько раз площадь под картофеле

Математика 1-4 классыОпредели, сколько необходимо квадратов со стороной 1см для того, чтобы составить квадрат со стороной а) 2 см б)3 см в)4 см

Теги: квадрат
Рейтинг: 0 Голосов: 0 1211 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!