Вершины треугольника ABC имеют координаты A(-2,0,1), B(-1,2,3)...
13 февраля 2013 - Администратор
Рейтинг: 0
Голосов: 0
1341 просмотр
Комментарии (0)
Нет комментариев. Ваш будет первым!
Вершины треугольника ABC имеют координаты A(-2, 0, 1), B(-1, 2, 3) C( 8, -4, 9). Найти координаты вектора ВМ если , если BM- медиана треугольника ABС. найти длину средней линии которая параллельна стороне АВ.
найти координаты точки Д где АВСD параллелограмм. . .
Даны два вектора А В
а =6 в=3
а и в =120
найти длину вектора
1) М-середина отрезка АС, значит М((-2+8)/2;(0-4)/2;(1+9)/2), М(3;-2;5), вектор ВМ имеет координаты: (3+1;-2--2;5-3) или (4;-4;2)
2) Пусть средняя линия MN. N- середина ВС, аналогично пункту 1 находим координаты точки N: ((-1+8)/2;(2-4)/2; (3+9)/2) или (3,5;-1;6). Тогда длина отрезка MN равна корню квадратному из выражения (3,5-3)2+(-1+2)2+(6-5)2 (тут каждая скобка в квадрате!), равно корню квадратному из 2,25 или просто 1,5.
3) Для нахождения координаты вершины D параллелограмма ABCD составьте выражения: длина отрезка АС равна длине отрезка BD, т.е. (8+2)2+(-4-0)2+(9-1)2=(x+1)2+(y-2)2+(z-3)2, где (x;y;z) - координаты точки D. Аналогично выражения: длина отрезка АВ равна длине отрезка CD. А потом, например, длина отрезка AN равна длине отрезка ND. Составьте и решите систему из трех уравнений с тремя неизвестными. Сложно, не спорю!))
Источник: https://znanija.com/task/333006
Математика 1-4 классы → две стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.
Алгебра/Геометрия → геометрия 10 класс
Алгебра/Геометрия → Катеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см
Нет комментариев. Ваш будет первым!