В треугольнике ABC известно, что AB=7, AC=9, BC=13. В каком отношении, считая от точки C, биссектриса тупого угла A этого треугольника делит его медиану CM
Ответ:
Пусть медиана пересекает сторону ВА в точке О. Рассмотрим треугольник АОС АР в нём биссектриса . Точка Р это точка пересечения биссектрисы тупого угла и медианы СО. Биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам АО=3,5АС=9 тогда РС:ОР= АС:АО СР:АО= 9:3,5=90:35=18:7
Источник: https://znanija.com/task/165216
Похожие статьи:
Математика 1-4 классы → две стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.
Алгебра/Геометрия → геометрия 10 класс
Алгебра/Геометрия → Катеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см