В трапеции ABCD (где BC || AD) с диагональю BD углы ABD и BCD равны. Дано: BС=10 см, DC= 15 см и BD = 20 см. Определить АВ и AD.

31 декабря 2012 - Администратор

В трапеции ABCD (где BC || AD) с диагональю BD углы ABD и BCD равны. Дано: BС=10 см, DC= 15 см и BD = 20 см. Определить АВ и AD.

Ответ:

Угол АВД = углу ВСД (по условию)

угол ВДА = углу ДВС (накрест лежащие)

Значит треугольники АВД и ВСД - подобны.Напротив равных углов лежат пропорциональные стороны. Составим все пропорции:

АД/ВД = АВ/СД = ВД/ВС   Подставим известные величины:

АД/20 = АВ/15 = 20/10 = 2

Значит:   АД/20 = 2   и  АВ/15 = 2

Отсюда АВ = 30,  АД = 40.

Ответ: 30 см;  40 см.

Ответ #2:

Треугольники АВД и ДСВ подобны, так как у них равны две пары углов - 1-по условию, 2-как внутренние разносторонние.

Соответствующие стороны пропорциональны.

ВС/ВД = СД/АВ = ВД/АД

АВ=ВД*СД/ВС=20*15/10=30 (см)

АД=ВД*ВД/ВС=20*20/10=40 (см)

Ответ. АВ=30 см, АД=40 см. 

Источник: https://znanija.com/task/256960

Рейтинг: 0 Голосов: 0 522 просмотра
Комментарии (0)

Нет комментариев. Ваш будет первым!