В ромбе ABCD AK-биссектриса угла CAB, угол BAD=60 ГРАДУСОВ, BK=12СМ. Найдите площадь ромба.
Ответ:
АК биссектриса Тогда угол ВАК= углу КАД = углу ВКА как внутренние накрест лежащие. Тогда треугольник ВАК равнобедренный, т.к. углы при основании равны. Тогда ВК=12= АВ. В треугольнике ВАД - равнобедренном один угол 60 гр. Тогда треугольник равносторонний. АВ=ВД= АД=12 см. Найдём высоту ромба Это будет высота равностороннего треугольника АВД ВН= 12* sin60=12* корень из 3 и разделить на 2 = 6 корней из 3. Тогда площадь 12* 6 корней из 3=72 корня из 3 кв.см
Источник: https://znanija.com/task/115188