В равнобедренном треугольнике сторона делится точкой касания вписанной окружности 8:5 считая от вершины лежащей против основания. найдите основание треугольника если радиус вписанной окружности равен 10
Ответ:
Поскольку длины касательных, проведенных к окружности из одной точки равны, то стороны треугольника равны 13 * Х, 13 * Х и 10 * Х, высота по теореме Пифагора h = √ ((13 * X)² - (10 * X / 2)²) = √ (144 * X²) = 12 * X, а
площадь S = 10 * X * 12 * X / 2 = 60 * X², а радиус вписанной окружности
r = 2 * S / (a + b + c) = 2 * 60 * X² / (13 * X + 13 * X + 10 * X) =
120 * X² / (36 * X) = 10 * X / 3 = 10 , откуда Х = 3, а длина основания
10 * 3 = 30 см.
Источник: https://znanija.com/task/276762
Похожие статьи:
Математика 1-4 классы → две стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.
Алгебра/Геометрия → Катеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см
Алгебра/Геометрия → геометрия 10 класс