В равнобедренном треугольнике боковая сторона равна 10 см, а биссектриса, праведённая к основанию 8 см. Найдите радиус окружности, вписанной в этот треугольник, и радиус окружности, описаной около это

29 декабря 2012 - Администратор
В равнобедренном треугольнике боковая сторона равна 10 см, а биссектриса, праведённая к основанию 8 см. Найдите радиус окружности, вписанной в этот треугольник, и радиус окружности, описаной около этого треугольника.

Ответ:

В равнобедренном треугольнике биссектриса проведенная к основанию является высотой и медианой. Найдем длину основания треугольника: √10²-8²=√100-64=√36=6 см, длина основания треугольника а= 2 *6 = 12 см.радиус вписанной окружности: r=S/pрадиус описанной окружности: R = abc/4SS= 12* 8 /2 = 48 cм²p=(12 + 10 + 10)/2 = 16r = 48/16 = 3 cмR = 12 * 10 * 10 / (4*48) =25/4 = 6,25 cм

Источник: https://znanija.com/task/249889

Похожие статьи:

Алгебра/Геометриягеометрия 10 класс

Алгебра/ГеометрияКатеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см

Математика 1-4 классыдве стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.

Рейтинг: 0 Голосов: 0 851 просмотр
Комментарии (0)

Нет комментариев. Ваш будет первым!