В прямоугольном треугольнике высота, опущенная на гипотенузу, делит его на треугольники, площади которых: 54 см2 и 6 см2. Найти все стороны треугольника.

18 января 2013 - Администратор

В прямоугольном треугольнике высота, опущенная на гипотенузу, делит его на треугольники, площади которых: 54 см2 и 6 см2. Найти все стороны треугольника.

Ответ:

Поскольку у двух образованных треугольников общая высота, то проекции катетов на гипотенузу относятся как  54 : 6 = 9 : 1  и, следовательно, сами катеты относятся как  3 : 1 (отношение проекций катетов на гипотенузу равно квадрату отношений длин самих катетов).

Пусть длина одного катета Х, тогда длина второго катета 3 * Х.

По формуле площади   Х * 3 * Х / 2 = 1,5 * X² = 54 + 6 = 60

Тогда  Х² = 40 ,  а  Х = √40 = 2 * √10 см. Тогда длина второго катета

3 * 2 * √40 = 6 * √40 см , а длина гипотенузы 

√((2*√10)² + (6*√10)²) = √(40 + 360) = √400 = 20 см.

Источник: https://znanija.com/task/272584

Рейтинг: 0 Голосов: 0 662 просмотра
Комментарии (0)

Нет комментариев. Ваш будет первым!