в прямоугольном треугольнике АВС катеты равны a и b, гипотенуза- с , а высота опущенная из вершины прямого угла -h . Докажите что ab=ch
Ответ:
Треугольник АВС. АВ И ВС - катеты, угол С=90 градусов. Так как треугольник - прямоугольный, то его площадь - это половина произведения катетов. S=0.5*а*b
В любом треугольнике площадь высчитывается по формуле "половина основания умножить на высоту*. Высота, проведенная из прямого угла к гипотенузе, равна h по условию, гипотенуза=c по условию. Тогда S=0.5*c*h
Так как это один и тот же треугольник, то 0.5*а*b=0.5*c*h
делим правую и левую части на 0.5 и получаем искомое равенство. a*b=c*h. Что и требовалось доказать.
Источник: https://znanija.com/task/192044