Точка М находится вне плоскости квадрата ABCD на одинаковом расстоянии от всех вершин. Определите взаимное размещение плоскостей (AMC) и (BDM).
Ответ:
Так как АМ=ВМ=СМ=ДМ, спроэктируем точку М на плоскость АВСД и увидим, что точка О1 - центр пересечения диагоналей квадрата
Так ка диагонали квадрата пересекаются под прямым углом, то плоскости АМС и ВДМ перпендикулярны между собой
Источник: https://znanija.com/task/183684
Похожие статьи:
Геометрия 5-9 классы → из точки пространства к данной плоскости проведена наклонная длиной 20 см и образуя с этой плоскостью угол. найти расстояние от этой точки до плоскости
Геометрия 5-9 классы → Из точки к плоскости проведены две наклонные, образующие с плоскостью уголы по 30 градусов. Найдите угол между проекциями наклонных, если угол между наклонными равен 60 градусов.
Алгебра → отрезок МН пересекает плоскость в точке К. Из концов этого отрезка на плоскость опущены препендикуляры ММ1 и НН1 . Найдите длину М1Н1, если ММ1=4см, МК=5см, НН1=12см
Геометрия 5-9 классы → Расстояние от конца отрезка AB до плоскости альфа равны соответственно: 3см и 7см. Найдите расстояние от середины отрезка до плоскости альфа если отрезок АВ не пересекается с плоскостью альфа
Геометрия 5-9 классы → плоскость пересикает шар радиуса 10 см. найдите расстояние от плоскости до центра шара, если радиус круга, полученного в сечении, равен 6 см