сторона правильного треугольника равна 8 см. Найдите радиус окружности: 1)вписанный в треугольник 2)описанной вокруг треугольника
Ответ:
Радиус вписанной окружности правильного треугольника, выраженный через его сторону:r=√3a/6. Радиус описанной окружности правильного треугольника, выраженный через его сторону: R=√3a/3. r=4√3/3 R=8√3/3
Ответ #2:
Центр вписанной в правильный треугольник окружности есть точка рересечения биссектрис углов треугольника. А описанной есть точка пересечения серединных перпендикуляров. В правильном треугольнике эти точки совпадают и центры окружностей тоже. Поэтому найдём длину высоты в правильном треугольнике по теореме Пифагора 64-14=48 Извлечём корень и будет 4 корня из 3. Радиус вписанной окружности будет составлять одну треть от этой высоты, т.к. высота является и медианой. Тогда радиус вписанной окружности 4\3 корней из 3 см. А описанной 8 корней из 3 делённой на 3 см.
Источник: https://znanija.com/task/75563
Похожие статьи:
Алгебра/Геометрия → геометрия 10 класс
Математика 1-4 классы → две стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.
Алгебра/Геометрия → Катеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см