Среди 2012 внешне не различимых шариков половина имеет один вес...

8 февраля 2013 - Администратор

Среди 2012 внешне не различимых шариков половина имеет один вес , а другая половина другой. Требуется выделить две кучки шариков так, чтобы количество шариков в кучках было одинаковым а вес разным. Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?

Ответ:

Я думаю, что за два.

1. Для начала разделить шары на 4 кучи по 503 шара.

2. Потом взвесит любые две пары куч и определить какая из них весит меньше и положить их в разные стороны. Если же они имеют одинаковый вес, то объединить в одну, две оставшиеся кучи тоже можно объединить в другую. Ну и обе полученные кучи будут обладать разным весом, потому из условий задачи нельзя получить 4 равные по весу кучи.

3. Ну и теперь взвешиваем эти две кучи и определяем какая из них будет весить меньше.

Итог - вы имеете 2 разные по весу кучи, но с одинаковым количеством шаров.

Источник: https://znanija.com/task/331077

Похожие статьи:

Математика 1-4 классыВ синей коробки было в 3 раза больше шариков чем в красной, когда в красную кородку добавили еще 14 шариков то в обеих кородках шариков стало поровну, сколько шариков было в синей коробки?

Математика 1-4 классыВ коробке 2 чёрных и 4 белых шариков. Какое наименьшее число шариков надо взять из коробки (не заглядывая в неё), чтобы среди вынутых шариков был хотя бы: 1) 1 чёрный шарик; 2) 1 белый шарик.

Математика 1-4 классы840 шариков разложили в 3 коробки так, что в каждой следующей коробке шариков оказалось в 2 раза больше, чем в предыдущей. Сколько шариков в каждой коробке?

Математика 1-4 классыМасса 9 шариков ровна массе 2 кубиков и 2 шайб, но при этом масса шайб меньше в 2 раза чем масса 1 кубика. Сколько шариков надо взять, чтобы их масса стала ровна массе 1 кубика?

Рейтинг: 0 Голосов: 0 470 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!