Шахматная доска разрезана на 13 прямоугольников с целым числом...

2 мая 2013 - Администратор

Шахматная доска разрезана на 13 прямоугольников с целым числом клеток. Доказать, что они не могут все быть различными.

Ответ:

Предположим что можно.Будем рассматривать прямоугольники вида m*n

где  1<=m<=8 1<=n<=8 причем прямоугольники будем считать равными с точностью

до поворота на 90 градусов т е прямоугольники 2*3 и 3*2 считаем одинаковыми(подразумевается по условию задачи и следует из решения в противном случае такое замощение существует)

Найдем площади замощения меньше которой не могут замостить 13 различных прямоугольников

1*1+1*2+1*3+1*4+2*2+1*5+1*6+2*3+1*7+1*8+2*4+2*5+2*6=64+2*6<=S а на шахматной

доске 64 клетки т е противоречие чтд

Источник: https://znanija.com/task/336618

Рейтинг: 0 Голосов: 0 496 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!