Решите уравнение: cos в квадрате x -cos2x=sinx cos2x+sin в квадрате x=cosx
29 декабря 2012 - Администратор
Рейтинг: 0
Голосов: 0
1002 просмотра
Комментарии (0)
Нет комментариев. Ваш будет первым!
Решите уравнение:
cos в квадрате x -cos2x=sinx
cos2x+sin в квадрате x=cosx
1) cos^2(x)-cos(2x)=sin(x)
cos^2(x)-(cos^2(x)-sin^2(x))=sin(x)
sin^2(x)-sin(x)=0
sin(x)(sin(x)-1)=0
a) sin(x)=0
x=pi*n
б) sin(x)-1=0
sin(x)=1
x=(pi/2)+2*pi*n
2) cos(2x)+sin^2(x)=cos(x)
( cos^2(x)-sin^2(x))+sin^2(x)=cos(x)
cos^2(x)-cos(x)=0
cos(x)(cos(x)-1)=0
a) cos(x)=0
x=(pi/2)+pi*n
б) cos(x)-1=0
cos(x)=1
x=2*pi*n
Источник: https://znanija.com/task/195147
Алгебра → ПОМОГИТЕ, пожалуйста, очень...
Алгебра → sinx =1! cosx=-1! tgx=1 sin2x-cos2x=0 cos2x то 2 в квадрати
Нет комментариев. Ваш будет первым!