решить уравнение
3sin(pi/2+x)-cos(2pi+x)=1
найти корни уравнения, принадлежащие отрезку [0;2pi]
cos2x+3sinx=1
найти наименьшее и наибольшее значение функции
y=2cos2x+ sin^2x
Ответ:
1) 3sin(pi/2+x)-cos(2pi+x)=1
3cos(x)-cos(x)=1
2cos(x)=1
cos(x)=1/2
x=+-arccos(1/2)+2*pi*n
x=+-pi/3+2*pi*n
2) cos2x+3sinx=1
1-2sin^2(x)+3sin(x) =1
3sin(x)-2sin^2(x)=0
sin(x)*(3-2sin(x)=0
a) sin(x)=0
x=pi*n
б) 3-2sin(x)=0
sin(x)=3/2 >1 - не удовлетворяет ОДЗ - нет решений
таким образом на [0;2pi] корни 0; pi; 2pi
3) y=2cos2x+ sin^2x
Найдем производную и приравняем к нулю
y ' = -4sin(2x)+2sin(x)cos(x)=-3sin(2x)=0
sin(2x)=0
2x=pi*n
x=pi*n/2
точки вида pi*n/2 - точки max и min
При x=pi/2
y=-1
При x=pi
y=2
тоесть
Точки min pi*n/2 , где n нечетное
Точки max pi*n/2 , где n четное
Источник: https://znanija.com/task/140052