Основанием пирамиды DABC является правильный треугольник ABC, сторона которого равна a. Ребро DA перпендикулярно к плоскости ABC, а плоскость DBC составляет с плоскостью ABC угол 30 градусов. Найдите площадь боковой поверхности пирамиды.
Ответ:
В основании проведем высоту АК=а*(корень из 3)/2, DA/AK=tg30=корень из3/3, DA=a/2, DK=корень из(DА^2+AK^2)=a ,имеем 2 треуг. скатетами a ,a/2и один площадью a^2/2(BDC), всего s(бок)=ав квадрате.
Источник: https://znanija.com/task/167234
Похожие статьи:
Геометрия 5-9 классы → плоскость пересикает шар радиуса 10 см. найдите расстояние от плоскости до центра шара, если радиус круга, полученного в сечении, равен 6 см
Геометрия 5-9 классы → Из точки к плоскости проведены две наклонные, образующие с плоскостью уголы по 30 градусов. Найдите угол между проекциями наклонных, если угол между наклонными равен 60 градусов.
Алгебра → отрезок МН пересекает плоскость в точке К. Из концов этого отрезка на плоскость опущены препендикуляры ММ1 и НН1 . Найдите длину М1Н1, если ММ1=4см, МК=5см, НН1=12см
Геометрия 5-9 классы → из точки пространства к данной плоскости проведена наклонная длиной 20 см и образуя с этой плоскостью угол. найти расстояние от этой точки до плоскости
Геометрия 5-9 классы → Расстояние от конца отрезка AB до плоскости альфа равны соответственно: 3см и 7см. Найдите расстояние от середины отрезка до плоскости альфа если отрезок АВ не пересекается с плоскостью альфа