Один из катетов прямоугольного треугольника равен 15, а...

9 февраля 2013 - Администратор

Один из катетов прямоугольного треугольника равен 15, а проекция другого катета на гипотенузу 16. Найти радиус окружности, вписанной в этот треугольник.

Ответ:

Пусть проекция первого катета на гипотенузу равна х, тогда гипотенуза равна х+16.

Квадрат катета равен произведению гипотенузы на его проекцию на гипотенузы.

х(х+16)=15^2

x^2+16x-225=0

D=256+900=1156

x1=(-16-34)/2<0 - не подходит, длина отрезка не может быть отрицательным числом

х2=(-16+34)/2=9

 

Гипотенуза равна 9+16=25

Второй катет равен корень(25*16)=5*4=20

 

Радиус окружности, вписанной в прямоугольной треугольник равен

к=(a+b-c)/2.

a=15,b=20, c=25

r=(15+20-25)/2=5

ответ: 5

Источник: https://znanija.com/task/301800

Похожие статьи:

Математика 1-4 классыдве стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.

Алгебра/Геометриягеометрия 10 класс

Алгебра/ГеометрияКатеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см

Рейтинг: 0 Голосов: 0 841 просмотр
Комментарии (0)

Нет комментариев. Ваш будет первым!