Можно ли расставить числа 1,2,3,4,...,20 в вершинах и серединах...

22 марта 2013 - Администратор
Можно ли расставить числа 1, 2, 3, 4, . . . , 20 в вершинах и серединах рёбер куба так, чтобы число, стоящее в середине каждого ребра , равнялось полусумме чисел, стоящих на концах этого ребра?

Ответ:

Нельзя! Доказательство: Число 1 не может быть поставлено в середину ребра куба, т.к. полусумма ни одной пары оставшихся чисел не может быть равна 1. Наименьшее возможное значение такой полусуммы (2+4):2=3. Следовательно, число 1 должно располагаться в вершине куба. Из этого вытекает, что в вершинах куба могут располагаться только нечетные числа (По условию сумма чисел, стоящих на концах ребра, должна делиться на 2 без остатка, т.е. быть четной. А сумма двух чисел, одно из которых нечетное, может быть четной только при условии, что и второе число тоже нечетное). Из этого следует, что число 20 будет располагаться в середине какого-либо ребра куба. Очевидно, что число 20 не может быть полусуммой каких-либо двух чисел, каждое из которых меньше 20. Вывод: расположить числа указанным в задаче способом невозможно.

Источник: https://znanija.com/task/305796

Рейтинг: 0 Голосов: 0 538 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!