Из точек А и В, лежащих в двух перпендикулярных плоскостях,...

8 февраля 2013 - Администратор

 Из точек А и В, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры АС и BD на прямую пересечения плоскостей. Найдите длину отрезка АВ, если АD=4, ВС=7, СD=1

Ответ:

треугольник ВDА: АВ^2=AD^2+DB^2=16+DB^2 (о теореме Пифагора)

треугольник BDC: DB^2=CB^2-CD^2=49-1=48 (по теореме Пифагора), тогда

АВ^2=16+48=64, 

АВ=8

Источник: https://znanija.com/task/353606

Рейтинг: 0 Голосов: 0 932 просмотра
Комментарии (0)

Нет комментариев. Ваш будет первым!