Исследовать сходимость рядов

31 декабря 2012 - Администратор

Исследовать сходимость рядов

Ответ:

Первый ряд сходится, т.к он заведомо меньше сходящегося ряда с 

а = 4/(3n квад) (признак сравнения рядов).

 Второй ряд не существует (или расходится), т.к при n=1 он не определен!!! (ln1=0) а1 = бесконечности

 Если исправить ошибку и n стартует с 2, а не с одного, тогда Ряд сходится по признаку Лейбница, т.к предел общего члена при n стрем. к бескон. равен 0 и каждый последующий член по модулю меньше предыдущего ( т.к ф-ия lnx - монотонно возрастающая)

Источник: https://znanija.com/task/251942

Рейтинг: 0 Голосов: 0 884 просмотра
Комментарии (0)

Нет комментариев. Ваш будет первым!