Докажите, что если биссектриса внешнего угла треугольника...

19 февраля 2013 - Администратор

Докажите, что если биссектриса внешнего угла треугольника параллельна стороне треугольника, то треугольник является равнобедренным

Ответ:

Решение: Пусть ABC – данный треугольник, CK – биссектриса внешнего угла BСD, CK || AB.

 CK – биссектриса внешнего угла BСD, значит угол BCK=угол DCK

CK || AB, по свойству параллельных прямых угол  CAB=угол DCK

По свойству внешнего угла внешний угол BCD=2*угол DCK=угол CAB+уголACB=

= угол DCK+ уголACB, отсюда

уголACB= угол DCK= угол CAB

уголACB= угол CAB, значит треугольник ABC равнобедренный по свойству равнобедренного треугольника, причем AC=BC.

Доказано.

Источник: https://znanija.com/task/225489

Похожие статьи:

Алгебра/ГеометрияКатеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см

Математика 1-4 классыдве стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.

Алгебра/Геометриягеометрия 10 класс

Рейтинг: 0 Голосов: 0 685 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!