Докажите, что если биссектриса внешнего угла треугольника...
19 февраля 2013 - Администратор
Рейтинг: 0
Голосов: 0
685 просмотров
Комментарии (0)
Нет комментариев. Ваш будет первым!
Докажите, что если биссектриса внешнего угла треугольника параллельна стороне треугольника, то треугольник является равнобедренным
Решение: Пусть ABC – данный треугольник, CK – биссектриса внешнего угла BСD, CK || AB.
CK – биссектриса внешнего угла BСD, значит угол BCK=угол DCK
CK || AB, по свойству параллельных прямых угол CAB=угол DCK
По свойству внешнего угла внешний угол BCD=2*угол DCK=угол CAB+уголACB=
= угол DCK+ уголACB, отсюда
уголACB= угол DCK= угол CAB
уголACB= угол CAB, значит треугольник ABC равнобедренный по свойству равнобедренного треугольника, причем AC=BC.
Доказано.
Источник: https://znanija.com/task/225489
Алгебра/Геометрия → Катеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см
Математика 1-4 классы → две стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.
Нет комментариев. Ваш будет первым!