Диагонали прямоугольника пересекаются под углом 60 градусов и...
7 марта 2013 - Администратор
Рейтинг: 0
Голосов: 0
3494 просмотра
Комментарии (0)
Нет комментариев. Ваш будет первым!
Диагонали прямоугольника пересекаются под углом 60 градусов и равны 10 см. Найдите меньшую сторону этого прямоугольника
Треугольник, вершины которого - точка пересечения диагоналей и вершины меньшей стороны - равносторонний (равнобедренный с углом 60 градусов), поэтому меньшая сторона равна половине диагонали, то есть 5 см.
Пусть дан прямоугольник АВСД, с диагоналями АС и ВД - пересекающимися в точке О. Пусть угол АОВ = 60 град., тогда из неравенства треугольника следует, что напротив меньшего угла лежит мень шая сторона треугольника, т.к. углы АОВ и ВОС смежные, то угол ВОС = 120град., следовательно сторона АВ меньше стороны ВС.
в прямоугольнике диагонали пересекаюися и точкой пересечения делятся пополам (сво-во диагоналей прямоугольника), значит ВО=АО=5см, следовательно треугольник АОВ - равнобедренный, значит углы АВО и ОАВ равны по 60 град, а следовательно треугольник АОВ так же является равносторонним, значит АО=ОВ=АВ=5см.
Ответ: 5см.
Источник: https://znanija.com/task/330050
Нет комментариев. Ваш будет первым!