Дан треугольник ABC, в котором AC=8, угол B=arccos(1/7), угол A=arccos(11/14). Найдите: а)

18 января 2013 - Администратор

Дан треугольник ABC, в котором AC=8, угол B=arccos(1/7), угол A=arccos(11/14). Найдите: а) O_{a}O_{c}; б)  O_{c}O

 

если продолжить стороны треугольника то внешне рисуем окружность которая касается стороны и продолжений сторон Оа это центр окружности касающийся сторона a, Ос соответственно со стороной с . О-ц. опис. окружности

Ответ:

Из середины  АС(точка Т) восстанови перпендикуляр до пересечения с срединным перпендикуляром из середины АВ. Получим точку О. ( Тогда центр впис. окр-ти назови О1)

Найдем радиус опис. окр-ти R:

R = abc/4S = 5*7*8/(4*10кор3) = 7/кор3

Тогда в прямоугольной трапеции FOcOT:

ОсF = Rc = 10кор3)/3, FT = 4+2 = 6, ОТ = кор(R^2 - 16) = кор3)/3

Тогда:

ОсО = кор(36 + (Rc-OT)^2) = кор(36 + (3кор3)^2) = кор(36 + 27)= кор63 = 3кор7

Ответ: ОсО = 3кор7

Источник: https://znanija.com/task/255426

Похожие статьи:

Алгебра/ГеометрияКатеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см

Алгебра/Геометриягеометрия 10 класс

Математика 1-4 классыдве стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.

Рейтинг: 0 Голосов: 0 711 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!