Дан прямоугольный треугольник ABC, угол С=90градусов, CD перепендикулярно AB, AC=3см, CD=2, 4см 1) Доказать:  ABC подобен ADC, найти стороны треугольника ABC, найти его площадь 2) Раз

29 декабря 2012 - Администратор

Дан прямоугольный треугольник ABC, угол С=90градусов, CD перепендикулярно AB, AC=3см, CD=2, 4см

1) Доказать:  ABC подобен ADC, найти стороны треугольника ABC, найти его площадь

2) Разложить вектор CD по векторам CA и CB

3) Найти площадь вписанного в треугольник круга 

Ответ:

Решение: 1) Треугольник ABC подобен ADC за двумя углами,

(угол ACB=угол ADC =90 градусов,

угол BAC=угол DAC).

По теореме Пифагора AD=корень(AC^2-CD^2)= корень(3^2-2.4^2)=1.8

Квадрат высоты равен произведению проекций катетов на гипотенузу:

CD^2=AD*BD, отсюда BD=CD^2\AD, BD=2.4^2\1.8=3.2

Гипотенуза AB=AD+BD=1.8+3.2=5 см

По теореме Пифагора катет BC=корень(AB^2-AC^2)=

=корень(5^2-3^2)=4 см

Площадь прямоугольного треугольника равна половине произведения катетов:

S=1\2*AC*BC=1\2*3*4=6 см^2.

2) Дополнив треугольник до параллелограмма,

проведя стороны BF|| CA, AF|| CB

Вектор CD=1\2*вектор CF=1\2*(вектор CA+ вектор CB)

3)Радиус вписанного круга в прямоугольный треугольник равен половине от разницы( сумма катетов – гипотенуза)

r=1\2*(AC+BC-AB)

r=1\2*(3+4-5)=1

Площадь круга равна Sкр=pi*r^2

Sкр=pi*r^2=3.14*1^2=3.14

Источник: https://znanija.com/task/224503

Похожие статьи:

Алгебра/ГеометрияКатеты прямоугольного треугольника 12,4 см и 8,7 . Из вершины прямого угла проведен перпендикуляр к плоскости треугольника длиной 10,4 см

Алгебра/Геометриягеометрия 10 класс

Математика 1-4 классыдве стороны треугольника равны соответственно 8дм 5см и 1м3см. найди его третью сторону если периметр треугольника равен 2м 63см.

Рейтинг: 0 Голосов: 0 1810 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!