Блондинка хочет обойти все модные магазины в центральной части...

6 апреля 2013 - Администратор

Блондинка хочет обойти все модные магазины в центральной части Милана (см. план) Начав обход с вокзала (точка В) и закончив в своём отеле( точка О). Для этого ей надо пройти как можно большее число кварталов (квартал на плане - отрезок между двумя соседними перекрёстками, но на каждом перекрёстке она может оказаться не более 1 раза , иначе она запутается и не попадёт в отель, даже если дважды окажется на перекрёстке, где находится отель) Какое максимальное число кварталов может она пройти при условии , что рассматривать покупки она собирается в отеле?

Ответ:

По всей видимости, максимальная протяжённость маршрута составит 34 улицы. Число пройденных улиц равно числу перекрёстков, которые удалось посетить, минус один (поскольку начальную точку мы "посетили" изначально, не пройдя ещё ни одной улицы). На один перекрёсток зайти так и не получится: к каждому пройденному перекрёстку подходит 2 улицы, по которым надо пройти. В нашем случае непройденным остался один перекрёсток, и к нему нельзя подойти, не пройдя дважды по другим перекрёсткам.

Докажем теперь, что в данном случае один перекрёсток останется не пройденным.

 Перекрёстки условно можно раскрасить в шахматном порядке в белый и чёрный цвет. Каждая улица соединяет два перекрёстка: один "черный", а другой - "белый". На нашей карте всего 36 перекрёстков, по 18 каждого "цвета". Причём два перекрёстка являются начальной и конечной точками пути, а остальные 34 ещё надо посетить. Однако, расположение начальной и конечной точек пути таково, что обе этих точки имеют одинаковый цвет. Это означает, что среди оставшихся перекрёстков будет 16 перекрёстков одного цвета и 18 другого.

Но ведь, чтобы пройти маршрут от О к В, надо построить такую последовательность точек, чтобы в ней чередовались цвета (черный-белый-черный и так далее). Имея в распоряжении 16 точек одного цвета и 18 другого, нельзя построить такую последовательность: из 18 точек одна останется лишней. Это и есть тот перекрёсток, на который не удастся зайти.

И, кстати, "цвет" этого оставшегося перекрёстка - не такой как у точек начала и конца, что видно на рисунке. Это будет справедливо и для любого другого маршрута с нашими начальными условиями.

Пройти по улицам, зайдя на все перекрёстки, можно будет лишь при таком расположении начала и конца, при котором эти точки окажутся разных "цветов". Или, что то же самое, если расстояние от начальной до конечной точки будет составлять нечётное число улиц.

Источник: https://znanija.com/task/325164

Похожие статьи:

Математика 1-4 классы1)неивестное натуральное число умножили на 7 и получили в разряде единиц результата 5. Какой цифрой будет оканчиваться значение произведения, если неизвестное число уменьшить на 3? Увеличить на 2? 2)З

Математика 1-4 классыСумма трёх чисел 87. Первое число 22 , второе - 43. Найди третье число.

Математика 1-4 классыКакое число больше на 9, чем 25? 36? 47? Какое число меньше на 8, чем 54? 62? 73?

Рейтинг: 0 Голосов: 0 628 просмотров
Комментарии (0)

Нет комментариев. Ваш будет первым!