ABC -прямоугольный, AB=25, BC = 151) Найти площадь...
15 февраля 2013 - Администратор
Рейтинг: 0
Голосов: 0
961 просмотр
Комментарии (0)
Нет комментариев. Ваш будет первым!
Согласно теореме Пифагора, второй катет
AC = √ (AB² - BC²) = √ (25² - 15²) = √ 400 = 20 см.
Тогда площадь треугольника
S = AC * BC / 2 = 20 * 15 / 2 = 150 см².
Радиус вписанной окружности
r = 2 * S / (a + b + c) = 2 * 150 / (15 + 20 + 25) = 300 / 60 = 5 см.
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы, то есть в данном случае R = AB / 2 = 25 / 2 = 12,5 см.
Пусть точка Е - середина стороны АС. Тогда по теореме Пифагора
ВЕ = √ (ВС² + СЕ²) = √ (ВС² + (АС/2)²) = √ (15² + 10²) = √ 325 ≈ 18,03 см.
Источник: https://znanija.com/task/285044
Нет комментариев. Ваш будет первым!